The Folding process of Human Profilin-1, a novel protein associated with familial amyotrophic lateral sclerosis
نویسندگان
چکیده
Human profilin-1 is a novel protein associated with a recently discovered form of familial amyotrophic lateral sclerosis. This urges the characterization of possible conformational states, different from the fully folded state, potentially able to initiate self-assembly. Under native conditions, profilin-1 is monomeric and possesses a well-defined secondary and tertiary structure. When incubated at low pH or with high urea concentrations, profilin-1 remains monomeric but populates unfolded states exhibiting larger hydrodynamic radius and disordered structure, as assessed by dynamic light scattering, far-UV circular dichroism and intrinsic fluorescence. Refolding from the urea-unfolded state was studied at equilibrium and in real-time using a stopped-flow apparatus. The results obtained with intrinsic fluorescence and circular dichroism indicate a single phase without significant changes of the corresponding signals before the major refolding transition. However, such a transition is preceded by a burst phase with an observed increase of ANS fluorescence, which indicates the conversion into a transiently populated collapsed state possessing solvent-exposed hydrophobic clusters. Kinetic analysis reveals that such state has a conformational stability comparable to that of the fully unfolded state. To our knowledge, profilin-1 is the first example of an amyloid-related protein where folding occurs in the absence of thermodynamically stable partially folded states.
منابع مشابه
Amyotrophic lateral sclerosis-associated mutant profilin 1 increases dendritic arborisation and spine formation in primary hippocampal neurons.
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease and familial ALS accounts for 10% of cases. The identification of familial ALS mutations in the actin-binding protein profilin 1 directly implicates actin dynamics and regulation in the pathogenesis of ALS. The mechanism by which these mutations cause ALS is unknown. In this study we show that expression of the ALS-asso...
متن کاملNeurobiology of Disease Profilin 1 Associates with Stress Granules and ALS-Linked Mutations Alter Stress Granule Dynamics
Mutations in the PFN1 gene encoding profilin 1 are a rare cause of familial amyotrophic lateral sclerosis (ALS). Profilin 1 is a well studied actin-binding protein but how PFN1 mutations cause ALS is unknown. The budding yeast, Saccharomyces cerevisiae, has one PFN1 ortholog. We expressed the ALS-linked profilin 1 mutant proteins in yeast, demonstrating a loss of protein stability and failure t...
متن کاملAn Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report
Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...
متن کاملProfilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics.
Mutations in the PFN1 gene encoding profilin 1 are a rare cause of familial amyotrophic lateral sclerosis (ALS). Profilin 1 is a well studied actin-binding protein but how PFN1 mutations cause ALS is unknown. The budding yeast, Saccharomyces cerevisiae, has one PFN1 ortholog. We expressed the ALS-linked profilin 1 mutant proteins in yeast, demonstrating a loss of protein stability and failure t...
متن کاملImpaired post-translational folding of familial ALS-linked Cu, Zn superoxide dismutase mutants.
Over 110 structurally diverse missense mutations in the superoxide dismutase (SOD1) gene have been linked to the pathogenesis of familial amyotrophic lateral sclerosis (FALS), yet the mechanism by which these lead to cytotoxicity still remains unknown. We have synthesized wild-type and mutant SOD1 in synchronized cell-free reticulocyte extracts replete with the full complement of molecular chap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015